
Third Midterm Review Solutions

Problem 1:
Suppose we have a pair of trick coins as follows. The first coin is fair, but if the first coin shows
heads then the second coin automatically will as well, and if the first coin shows tails then the
second coin is fair.
1) Compute expected value and covariance matrix of the two random variables.
2) Find linear combinations of the two random variables which are uncorrelated, and compute their
variances.
Solution: 1) Assign the value 1 to the outcome of “heads” and 0 to the outcome of tails for each

coin. Combine the two random variables into a 2-component random vector X =

[
x1

x2

]
.

There are only three possible outcomes, which occur with the following probabilities:

• With probability 1
2 , both coins show heads.

• With probability 1
4 , the first coin shows tails and the second shows heads.

• With probability 1
4 , the first coin shows tails and the second shows tails.

The expected value is therefore

E[X] =
1

2

[
1
1

]
+

1

4

[
0
1

]
+

1

4

[
0
0

]
=

[
1
2
3
4

]
and the covariance matrix is

K =

[
Σ11 Σ12

Σ21 Σ22

]
=

∑
j

pj [(Xj − µ)(Xj − µ)T ]

=
1

2

[
1
2
1
4

] [
1
2

1
4

]
+

1

4

[
−1

2
1
4

] [
−1

2
1
4

]
+

1

4

[
−1

2
−3

4

] [
−1

2 −3
4

]
=

[
1
4

1
8

1
8

3
16

]

(2) The eigenvectors of the covariance matrix are uncorrelated random variables that are linear
combinations of the originals, and the corresponding eigenvalues are their variances. We therefore

diagonalize the covariance matrix as follows. The characteristic polynomial of

[
4 2
2 3

]
= 16K is

[(4− λ)(3− λ)− 4] = (λ2 − 7λ+ 8)

And so (using the quadratic formula) the eigenvalues are λ = 7±
√

17
2 . Therefore, the Eigenvalues of

K are 1
16 times these, i.e.

λ =
7±
√

17

32
.
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A little computation shows the diagonal form is:

K =

[
1
4

1
8

1
8

3
16

]
=

[
1
4(1−

√
17) 1

4(1 +
√

17)
1 1

] [
1
32(7−

√
17) 0

0 1
32(7 +

√
17)

][− 2√
17

1
34(17 +

√
17)

2√
17

1
2 −

1
2
√

17

]

Notice here the change of basis matrices, while they have orthogonal columns, are not orthogonal
since we have not normalized the columns. In particular, the first matrix is not the transpose of
the third. The computation of this diagonal form is slightly messy: any question on the quiz will
be easily computable by hand, so don’t worry about this part.

The uncorrelated random variables/eigenvectors are then (now normalizing, which we do by
multiplying by the first matrix below)

[ 1
|( 1

4
(1−
√

17),1)| 0

0 1
|( 1

4
(1+
√

17),1)|

] [
1
4(1−

√
17) 1

1
4(1 +

√
17) 1

] [
x1

x2

]
=

√34−2
√

17
16

(
1
4(1−

√
17)x1 + x2

)√
34+2

√
17

16

(
1
4(1 +

√
17)x1 + x2

)


and their variances are the corresponding eigenvalues 7−
√

17
32 , 7+

√
17

32 .

Problem 2:
Consider the data set given by the following points in the xy plane:

{1, 1}, {2, 3}, {3, 5}, {4, 7}

.
(1) Compute the covariance matrix by applying singular value decomposition.
(2) Find linear combinations of the variables which are uncorrelated and their variances.
Solution:

We can combine the data into a pair of vectors x,y.

x =


1
2
3
4

 y =


1
3
5
7


Which we can combine into a single matrix

A =


1 1
2 3
3 5
4 7

 .
Next, we calculate the projection matrix PA by subtracting the mean of each column. The mean

of the first column is 1
4(1+2+3+4) = 5

2 , and the mean of the second column is 1
4(1+3+5+7) = 4.

Therefore

PA =


−3

2 −3
−1

2 −1
1
2 1
3
2 3

 .
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If PA = UΣV T is the singular value decomposition of PA, then the covariance matrix is given
by K = V ΣT ΣV T

n−1 where n is the number of rows in PA (compare with eq. (314) and (316) in the
Lecture notes). The singular value decomposition in this case is

PA =


−3

2 −3
−1

2 −1
1
2 1
3
2 3



=


− 3

2
√

5
1√
2

1√
38

− 3
2
√

95

− 1
2
√

5
0 0

√
19

2
√

5
1

2
√

5
0 3

√
2√
19

1
2
√

95
3

2
√

5
1√
2
− 1√

38
3

2
√

95




5 0
0 0
0 0
0 0


[

1√
5

2√
5

− 2√
5

1√
5

]

Here we have omitted the computation of the singular value decomposition. As in problem 1,
any computations appearing on the quiz will be doable by hand. For practice computing singular
value decompositions, see problem 3.

With the above singular value decomposition, we compute:

K =
V ΣTΣV T

n− 1
=

1

3

[
1√
5
− 2√

5
2√
5

1√
5

] [
5 0 0 0
0 0 0 0

]
5 0
0 0
0 0
0 0


[

1√
5

2√
5

− 2√
5

1√
5

]

=
1

15

[
1 −2
2 1

] [
25 0
0 0

] [
1 2
−2 1

]
=

[
5
4

5
2

5
2 5

]
(2) The new variables

[
x′ y′

]
:=
[
x′ y′

]
:=
[
x y

]
V will be uncorrelated. (These are the

eigenvectors of K, since the above provides an orthonormal diagonalization). In our case, these are

[
x′ y′

]
=

1√
5

[
x + 2y
−2x + y

]
.

The corresponding variances are the eigenvalues 25
3 , and 0. Notice that the second combination

having zero variance makes sense: all the data points lie on the line 2x-y=1, so the second linear
combination is constant for our data set!

Problem 3:
Consider the matrix

A =

[
5 0 1
0 5 2

]
(1) Compute the Singular Value Decomposition of A.
(2) Write A as a sum of rank 1 matrices.
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(3) Compute the Pseudo-Inverse of A.

(4) Find a w such that Aw is closest to b =

[
3
4

]
. Then compute the projection of b onto C(A).

Solution:
(1) We are looking for a decomposition A = UΣV T . Here, U is 2× 2 and V is 3× 3. First we

compute the eigenvectors and eigenvalues of

AAT =

[
5 0 1
0 5 2

]5 0
0 5
1 12

 =

[
26 2
2 29

]
.

The characteristic polynomial is (26− λ)(29− λ)− 4 = λ2 − 55λ+ 750 = (λ− 30)(λ− 25), and so
the eigenvalues are λ = 30, 25. The corresponding eigenvectors are

N

[
−4 2
2 −1

]
= R

[
1
2

]
N

[
1 2
2 4

]
= R

[
2
−1

]
.

Which we normalize to obtain

U =

[
1√
5

2√
5

2√
5
− 1√

5

]
.

Next we find V using the formula ATui = σivi. Notice that the singular values are σ =
√

30, 5.
We obtain

ATu1 =

5 0
0 5
1 12

[ 1√
5

2√
5

]
=


5√
5

10√
5

25√
5

 =
√

30


1√
6

2√
6

1√
6



ATu2 =

5 0
0 5
1 12

[ 2√
5

− 1√
5

]
=


10√

5

− 5√
5

0

 = 5


2√
5

− 1√
5

0

 .
This gives two of the vectors in the orthonormal basis vi. To find the third we apply Gram-

Schmidt. The vector ṽ3 =

 0
0
−1

 is easily seen to be linearly uncorrelated from the other two. Thus

we compute

v3 = ṽ3 − (ṽ3 · v1)v1 − (ṽ3 · v2)v2 =

 0
0
−1

− (− 1√
6

)


1√
6

2√
6

1√
6

− 0 =

 1
6
1
3
−5

6


which normalized (still denoting it by the same symbol) is

v3 =


1√
30
2√
30

− 5√
30


(A faster but less general way to compute v3 in this case is to take v3 = v1 × v2. Of course, this
only works for R3).

The Singular Value Decomposition is therefore (remembering the vi are the rows of V T )
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A = UΣV T =

[
1√
5

2√
5

2√
5
− 1√

5

] [√
30 0 0
0 5 0

]
1√
6

2√
6

1√
6

2√
5
− 1√

5
0

1√
30

2√
30
− 5√

30

 .
(2) The Singular Value Decomposition gives A as a sum of the rank 1 matrices that have a single
σi on the diagonal.

A =

[
1√
5

2√
5

2√
5
− 1√

5

] [√
30 0 0
0 0 0

]
1√
6

2√
6

1√
6

2√
5
− 1√

5
0

1√
30

2√
30
− 5√

30

+

[
1√
5

2√
5

2√
5
− 1√

5

] [
0 0 0
0 5 0

]
1√
6

2√
6

1√
6

2√
5
− 1√

5
0

1√
30

2√
30
− 5√

30

 .
=

1√
5

[
1 2
2 −1

] [√
5 2
√

5
√

5
0 0 0

]
+

1√
5

[
1 2
2 −1

] [
0 0 0

2
√

5 −
√

5 0

]
=

[
1 2 1
2 4 2

]
+

[
4 −2 0
−2 1 0

]
.

(3) The Pseudo-Inverse of A = UΣV T is given by A+ = V Σ+UT . Using the matrices calculated
above we have

A+ = V Σ+UT =


1√
6

2√
5

1√
30

2√
6
− 1√

5
2√
30

1√
6

0 − 5√
30


 1√

30
0

0 1
5

0 0

[ 1√
5

2√
5

2√
5
− 1√

5

]

=


1√
6

2√
5

1√
30

2√
6
− 1√

5
2√
30

1√
6

0 − 5√
30




1√
150

2√
150

2
5
√

5
− 1

5
√

5

0 0


=

1

150

29 −2
−2 26
5 10

 .
(4) A vector w such that Aw is closest to b is given by (see page 87 of Lecture Notes)

A+

[
3
4

]
=

1

150

29 −2
−2 26
5 10

[3
4

]
=

1

150

79
98
55


And the projection onto the Column space is AA+

[
3
4

]
. This is

AA+

[
3
4

]
=

[
5 0 1
0 5 2

]
1

150

79
98
55

 =

[
3
4

]
.

Of course this is as expected: since A has full rank, the column space is all of R2.
Problem 4:
1) Find an orthonormal basis of R2 in which the matrix

A =

[
2 −1
−1 2

]
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is diagonal. Is this matrix positive (semi)-definite?
2) Is the matrix [

3 7
7 −1

]
positive (semi)-definite?
Solution: (1) To find an orthonormal basis in which the matrix is diagonal, we must decompose
A = QDQT where Q is an orthogonal matrix. To do this, we diagonalize and orthogonormalize
the eigenvectors.

The characteristic polynomial is

det

[
2− λ −1
−1 2− λ

]
= λ2 − 4λ+ 3 = (λ− 3)(λ− 1)

so λ = 1, 3 are the eigenvalues. At this point, since the eigenvalues are all strictly positive, we may
conclude that the matrix is positive definite. Since the eigenvalues are distinct, the eigenvectors
are therefore automatically orthogonal so we must find the normalized eigenvector corresponding
to each (i.e. no Gram-Schmidt is needed). These are the normalized vectors spanning

N

[
1 −1
−1 1

]
N

[
−1 −1
−1 −1

]

which are 1√
2

[
1
1

]
, 1√

2

[
1
−1

]
respectively. These vectors form the desired orthonormal basis, and

the diagonal form is [
2 −1
−1 2

]
=

1√
2

[
1 −1
1 1

] [
1 0
0 3

]
1√
2

[
1 1
−1 1

]
(2) A matrix is positive (semi)-definite if and only if it’s energy is (respectively) strictly positive,

or non-negative. The energy of the matrix is

E =
[
x y

] [3 7
7 −1

] [
x
y

]
=
[
x y

] [3x+ 7y
7x− y

]
= 3x2 − y2 + 14xy.

This quantity is neither strictly positive nor non-negative since, for instance, (x, y) = (0, 1)
results in the value -1. The matrix is therefore neither positive definite nor positive semi-definite.
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